Figure 1 Early pathophysiology of subarachnoid haemorrhage

Nat. Rev. Neurol. doi:10.1038/nrneurol.2013.246
Figure 2 Pathophysiological processes in delayed cortical ischaemia

Nat. Rev. Neurol. doi:10.1038/nrneurol.2013.246
Figure 3 Pathophysiological causes of ischaemia

Nat. Rev. Neurol. doi:10.1038/nrneurol.2013.246
Figure 4 CT scan and cerebral angiography of SAH

Nat. Rev. Neurol. doi:10.1038/nrneurol.2013.246
Figure 5 A management scheme—our approach to SAH and DCI

Table 1 Drugs in development for treatment of SAH

<table>
<thead>
<tr>
<th>Drug class</th>
<th>Putative mechanisms of action</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statins</td>
<td>Inhibit HMG-CoA reductase, thereby reducing synthesis of cholesterol, geranylgeranylpyrophosphate and farnesylpyrophosphate<sup>122</sup> Preserve endothelial function via increased synthesis of nitric oxide, and decreased synthesis of endothelin-1 and RhoA Anti-inflammatory effects Antioxidant effect via decreased production of oxygen free radicals and peroxynitrite, and decreased expression of angiotensin receptors and NADPH oxidase Anti-thrombotic actions Vascular protection through decreased expression of matrix metalloproteinases Neuroprotective and neurorestorative action (increased synaptogenesis, increased neurogenesis)</td>
<td>Six randomized clinical trials of statins in patients with SAH<sup>99</sup> Systematic review of these studies found no effect of statin treatment on poor outcome; mortality was 10% in statin group versus 21% in controls (RR 0.46, 95% CI 0.20-1.06); DCI was significantly reduced in statin group Quality of the studies overall was low to moderate At least two ongoing clinical trials<sup>20,21</sup> Current recommendation: only administer statins if the patient was already receiving them at time of SAH</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Vasodilatation via antagonism of calcium channels on vascular smooth muscle and increased endothelial cell prostacyclin<sup>256</sup> Endothelial protection through inhibition of platelet aggregation and decreased production of angiotensin-converting enzyme Protect the blood–brain barrier Reduce cerebral oedema via decreased aquaporin-4 expression Antagonism (N-methyl-D-aspartate receptor antagonism)</td>
<td>Studied in seven randomized clinical trials<sup>127,134</sup> Meta-analysis reported no effect of magnesium on poor outcome Therapeutic intravenous infusions of magnesium are not recommended for patients with SAH<sup>324</sup></td>
</tr>
<tr>
<td>Anti-inflammatory drugs</td>
<td>Prevent vasospasm, inhibit IL-2 production, and prevent T-cell dysfunction (using cyclosporin A)^<sup>311,315</sup> Inhibit complement activation and inflammation (using FUT-175 (nafamostat mesilate))<sup>339</sup> Acetylsalicylic acid and thromboxane synthase inhibitors have anti-inflammatory and antiplatelet activity<sup>311,132</sup> Prevent upregulation of endothelial cell adhesion molecules that allow binding of macrophages and neutrophils (which infiltrate the subarachnoid space, die and degenerate, releasing endothelin-1 and oxygen free radicals)<sup>54</sup> Corticosteroids have multiple anti-inflammatory actions, mostly on chronic inflammation NSAIDs inhibit cyclo-oxygenase, which decreases prostaglandin synthesis; ibuprofen inhibits expression of endothelial adhesion molecules and reduces subarachnoid inflammation</td>
<td>Literature review concluded that NSAIDs have little measurable benefit for treatment of SAH<sup>434</sup> Glucocorticoid steroids studied in three SAH trials, but too few patients studied (256) to draw conclusions about efficacy<sup>65</sup> Randomized controlled trial found no effect of methylprednisolone on angiographic vasospasm or DCI after SAH, but significantly improved outcome at 1 year compared with controls<sup>65</sup></td>
</tr>
</tbody>
</table>

Abbreviations: DCI, delayed cerebral ischaemia; HMG-CoA, 3-hydroxy-3-methylglutaryl coenzyme A; SAH, subarachnoid haemorrhage.